大学物理(电磁学(前半))——笔记

Adopac

2022年6月20日

目录

1	静电场				
	1.1	电场 电场强度	3		
	1.2	电通量 高斯定理	3		
	1.3	电场的功 电势	4		
	1.4	电场强度与电势梯度的关系	4		
	1.5	电场的能量	5		
2	稳恒	i磁场	6		
	2.1	磁场 磁感应强度	6		
	2.2	安培环路定理	6		
	2.3	磁场对载流导线的应用	7		
	2.4	磁场对运动电荷的作用	7		
	2.5	磁介质	8		
3	变化	的电磁场	9		
	3.1	电磁感应定律	9		
	3.2	动生电动势和感生电动势	9		
	3.3	自感应与互感应	9		
	3.4	磁场能量	10		
	3.5	位移由流 麦克斯丰方程组	10		

1 静电场 3

1 静电场

1.1 电场 电场强度

库仑定律 $F = k \frac{q_1 q_2}{r^2}$

设有常数 $\varepsilon_0 = \frac{1}{4\pi k} = 8.55 \times 10^{-12} C^2/(N \cdot m^2)$ 结合可得库仑定律为

$$\mathbf{F} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2} \mathbf{r}_0$$

其中 r₀ 是由施力电荷指向受力电荷的矢径方向的单位矢量。

电场强度

$$\mathbf{E} = rac{\mathbf{F}}{q_0}$$

电场强度遵循电场强度叠加原理。

点电荷的力场 将一试验电荷 q_0 放在点电荷 q 场的 P 点时, q_0 所受电场力为 $\mathbf{F} = \frac{1}{4\pi\varepsilon_0} \frac{q_0 q}{r^2} \mathbf{r}_0$ 因此 P 点电场强度为

$$\mathbf{E} = \frac{\mathbf{F}}{q_0} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \mathbf{r}_0$$

电荷连续分布的带电梯的电场 把带电梯分割成无限多个电荷元 dq,则带电体在 P 点的总电场强度为

$$\mathbf{E} = \int_{V} d\mathbf{E} = \int_{V} \frac{1}{4\pi\varepsilon_{0}} \frac{dq}{r^{2}} \mathbf{r}_{0}$$

1.2 电通量 高斯定理

电通量 $\Phi_e = ES$

$$\Phi_e = \int_S d\Phi_e = \int_S \mathbf{E} \cdot d\mathbf{S}$$

规定面元 $d\mathbf{S}$ 的法线 \mathbf{n} 的正向为指向闭合面的外侧,因此,从全面上穿出的电场线电通量为正值;穿入曲面的电场线,电通量为负值。

1 静电场 4

高斯定理 通过真空重的静电场任一闭合面的电通量 Φ_e 等于包围在该闭合面内的电荷代数和 $\sum q_i$ 的 ε_0 分之一,而与闭合面外的电荷无关。

模型	电场强度
点电荷	$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$
均匀带电无限大平面	$E = \frac{\sigma}{2\varepsilon_0}$
长为 L 的均匀带电直棒中垂线上	$E = \frac{\lambda}{2\pi\varepsilon_0 x} sin\theta_0 \mathbf{i}$
均匀带电无限长直棒中垂线上	$E = \frac{\lambda}{2\pi\varepsilon_0 x}$

1.3 电场的功 电势

试验电荷在任何静电场中移动时,静电场力所做的功,只与电场的性质、试验电荷的电量及路径起点和终点的位置有关,而与路径无关。

当试验电荷 q_0 从电场中的 a 点移动到 b 点时,电场力对它的做功等于相应电势能增量的负值,即

$$W_{ab} = \int_{a}^{b} q_0 \mathbf{E} \cdot d\mathbf{l} = -(E_{pb} - E_{pa}) = E_{pa} - E_{pb}$$

a 电场的电势用 U_a 表示,即

$$U_a = \frac{E_{pa}}{q_0} = \frac{W}{q_0} = \int_a^\infty \mathbf{E} \cdot d\mathbf{l}$$

电势的计算 选取无穷远处为电势零点时, 电场中任意一点 a 的电势为

$$U_a = \int_a^{\infty} \mathbf{E} \cdot d\mathbf{l} = \int_r^{\infty} \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} dr = \frac{q}{4\pi\varepsilon_0 r}$$

1.4 电场强度与电势梯度的关系

电场中某一点的电场强度 \mathbf{E} 沿某一方向的分量 E_l 等于电势沿该方向上的变化率的负值。即电场强度 \mathbf{E} 的矢量表达式可写成

$$\mathbf{E} = -(\frac{\partial U}{\partial x}\mathbf{i} + \frac{\partial U}{\partial y}\mathbf{j} + \frac{\partial U}{\partial z}\mathbf{j})$$

数学上,矢量 $\frac{\partial U}{\partial x}\mathbf{i} + \frac{\partial U}{\partial y}\mathbf{j} + \frac{\partial U}{\partial z}\mathbf{j}$ 称为电势的梯度,用 $\mathbf{grad}U$ 或 ∇U 表示。其中微分算符 $\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{j}$

电势梯度的物理意义为: **电势梯度是一个矢量**,**它的大小为电势沿等势** 面方向的变化率,它的方向沿等势面法向且指着电势增大的方向。

1 静电场 5

静电场中的导体 导体静电平衡的条件是:导体内部的电场强度为零。在导体表面附近的电场强度沿表面的法线方向。

电容 电容器 孤立导体的电容 $C = \frac{q}{11}$

电容器	电容大小			
平行板电容器	$C = \frac{\varepsilon_0 S}{d}$			
内、外半径 R_A 、 R_B 的同轴圆柱形电容器	$C = 2\pi\varepsilon l \frac{1}{\ln\frac{R_B}{R_A}} (R_A < R_B)$			
孤立的半径为 R 的球形电容器	$C = 4\pi\varepsilon_0 R$			
内、外半径 R_A 、 R_B 的同心球形电容器	$C = \frac{4\pi\varepsilon_0 R_A R_B}{R_B - R_A} (R_A < R_B)$			

1.5 电场的能量

带电系统的能量 当电容为 C 的电容器,两极板分别带有电量 +Q, -Q,两极板的电势差为 U 时,电容器具有能量

$$W_e = \int_0^Q U dq = \int_P^Q \frac{q}{C} dq = \frac{1}{2} \frac{Q^2}{C}$$

也可以表示为 $W_e = \frac{1}{2}CU^2 = \frac{1}{2}UQ$ 。

电场能量 电场能量密度 $\omega_e = \frac{W_e}{V} = \frac{1}{2}DE$

在真空中 $\mathbf{D} = \varepsilon_0 \mathbf{E}$

各向同性的电介质中 $\mathbf{D}=\varepsilon_0\varepsilon_r\mathbf{E}=\varepsilon\mathbf{E}$ $W_e=\int_V\frac{1}{2}\varepsilon E^2dV$ 在各向异性的电介质中 \mathbf{D} 与 \mathbf{E} 的方向不同,应 $W_e=\int_V\frac{1}{2}\mathbf{D}\cdot\mathbf{E}dV$

2 稳恒磁场 6

2 稳恒磁场

电流电动势 电流密度 $\mathbf{j} = \frac{dI}{dS}\mathbf{n}$ 单位: 安培每平方米 (A/m^2)

电动势 $\xi = \int_{-}^{+} \mathbf{E}_{k} \cdot d\mathbf{l}$ (把单位正电荷从负极通过电源内部移动到正极时,电源中的非静电力所做的功) $\xi = \oint_{L} \mathbf{E}k \cdot \mathbf{l}$ (把单位正电荷绕闭合回路一周时,电源中非进店里所做的功)

2.1 磁场磁感应强度

磁感应强度 B 的大小为 $B = \frac{F_{max}}{qv}$ 。方向使得 $\mathbf{v} \times \mathbf{BF}$ 同向。

磁通量 穿过磁场某一曲面的磁感线总数 $\phi_m = \int_S \mathbf{B} \cdot d\mathbf{S}$

磁场中的高斯定理 穿过任意闭合曲面的磁通量总为零,即

$$\oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0$$

毕萨定律

$$d\mathbf{B} = k \frac{Id\mathbf{l} \times \mathbf{r}}{r^3}$$

其中 r 为矢径,k 为比例系数, $k=\frac{\mu_0}{4\pi}$,其中 μ_0 称为真空的磁导率,大小为 $\mu_0=4\pi\times 10^{-7}T\cdot m/A$ 。

数学表达式为

$$dB = k \frac{Idl \sin(Id\mathbf{l}, \mathbf{r})}{r^2}$$

综合表达式为

$$dB = \frac{\mu_0 Idl \sin(Id\mathbf{l}, \mathbf{r})}{4\pi r^2}$$

模型	磁感应强度
圆电流圆心处	$B = \frac{\mu_0 I}{2R}$
长为 L 的载流直导线外距离导线 a 处	$B = \frac{\mu_0 I}{4\pi a} (\cos \theta_1 - \cos \theta_2)$
无限长的载流直导线外距离导线 a 处	$B = \frac{\mu_0 I}{2\pi R}$

2.2 安培环路定理

磁感应强度 B 沿着任何闭合曲线 L 的线积分,等于穿过这个闭合曲线 的所有电流强度的代数和的 μ_0 倍。

$$\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 \Sigma I_i$$

2 稳恒磁场 7

2.3 磁场对载流导线的应用

安培定律

$$d\mathbf{F} = Id\mathbf{l} \times \mathbf{B}$$

$$dF = BIdl \sin \theta$$

磁场对载流线圈的作用 磁矩 P_m 定义为

$$\mathbf{P}_m = \mathbf{I}_0 \Delta S \mathbf{n}$$

其中载流线圈所围面积为 ΔS , 线圈中电流为 I_0 。

磁矩 \mathbf{P}_m 是矢量,其方向与线圈的法线方向一致, \mathbf{n} 表示沿法线方向的单位矢量,法线与电流流向成右手螺旋关系。

磁力矩
$$\mathbf{M} = \mathbf{P}_m \times \mathbf{B}$$

磁力的功 $W = F\Delta x = BIl\Delta x = BI\Delta S = I\Delta \phi$

2.4 磁场对运动电荷的作用

洛伦兹力 磁场对运动电荷的力 f 称为洛伦兹力。洛伦兹力的矢量表达式为

$$f = q\mathbf{v} \times \mathbf{B}$$

数学表达式为

$$f = qvB\sin\theta$$

在匀强磁场中运动 运动方程为

$$\mathbf{F} = q\mathbf{v} \times \mathbf{B} = m\frac{d\mathbf{v}}{dt}$$

回旋半径 $R = \frac{mv}{qB}$ 周期为 $T = \frac{2\pi m}{qB}$ 。

霍尔效应 霍尔电势差

$$U_H = R_H \frac{IB}{d}$$

其中 R_H 是仅与导体材料有关的常数, 称为霍尔系数。

2 稳恒磁场 8

2.5 磁介质

相对瓷导率定义为 $\mu_r = \frac{B}{B_0}$ 磁化强度 $\mathbf{M} = \frac{\Sigma \mathbf{P}_{mi}}{\Delta V}$ 磁场强度矢量 $\mathbf{H} = \frac{\mathbf{B}}{\mu_0} - \mathbf{M}$ 与 \mathbf{B} 的关系

$$B = \mu_0 \mu_r \mathbf{H} = \mu \mathbf{H}$$

有磁介质时的安培环路定理

$$\oint_L \mathbf{H} \cdot d\mathbf{l} = \Sigma I_i$$

3 变化的电磁场

9

3 变化的电磁场

3.1 电磁感应定律

法拉第电磁感应定律 当穿过闭合导体回路的磁通量发生变化时,回路中产生感应电流。而感应电动势与穿过回路的磁通量对时间的变化率的负值成正比。

 $\xi = -\frac{d\phi_m}{dt}$

楞次定律 闭合回路中感应方向,总是使得它所激发的磁场去反抗引起感应电流的磁通量的变化。

3.2 动生电动势和感生电动势

动生电动势

$$\xi_{ab} = \int_{-}^{+} \mathbf{E}_k \cdot d\mathbf{l} = \int_{a}^{b} (\mathbf{v} \times \mathbf{B}) \cdot d\mathbf{l}$$

感生电动势

$$\xi = \oint_L \mathbf{E}_r \cdot d\mathbf{l} = -\frac{d\phi_m}{dt} = -\frac{d}{dt} \int_S \mathbf{B} \cdot d\mathbf{S}$$

3.3 自感应与互感应

自感应 线圈的自感磁链 $\psi_m = N\phi_m$

将比例系数 L 作为线圈的自感系数,它只依赖线圈本身的形状大小及介质的磁导率而与电流无关(有铁芯的线圈除外)。L 的单位时亨利(H)

引入比例系数的自感磁链

$$\psi_m = LI$$

引入自感后自感电动势为

$$\xi = -L \frac{dI}{dt}$$

真空中的长直密绕螺线管的自感

$$L = \mu_0 n^2 V$$

3 变化的电磁场

互感应 线圈的互感磁链 $\psi_{21} = M_{21}I_1$ $\psi_{12} = M_{12}I_2$

互感电动势

$$\xi_2 1 = -M \frac{dI_1}{dt}$$

10

3.4 磁场能量

自感磁能 $W_m = \frac{1}{2}LI^2$ 是电源反抗自感电动势所做的功 W 转化为储存在线圈中的能量。

磁场能量 μ 为磁介质的磁导率,当螺线管通以电流 I 时,它所储存的磁能为

$$W_m = \frac{1}{2}LI^2 = \frac{1}{2}\mu n^2 V I^2$$

,因为长直螺线管内 $H=nl\ B=\mu nI$ 。所以

$$W_m = \frac{1}{2}\mu n In IV = \frac{1}{2}BHV$$

磁场能量密度

$$\omega_m = \frac{W_m}{V} = \frac{1}{2}BH$$

对于一个载流线圈有

$$\frac{1}{2}LI^2 = \int_V \frac{1}{2} \mathbf{B} \cdot \mathbf{H} dV = W_m$$

3.5 位移电流 麦克斯韦方程组

位移电流 $I_D = \frac{d\phi_D}{dt}$ 真空总位移电流密度 $\mathbf{j}_D = \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$

麦克斯韦方程组

$$\begin{cases} \oint_{S} \mathbf{D} \cdot d\mathbf{S} = \Sigma q_{i} \\ \oint_{t} \mathbf{E} \cdot d\mathbf{l} = -\int_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S} \\ \oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0 \\ \oint_{t} \mathbf{l} \cdot d\mathbf{l} = \Sigma I_{i} + \int_{S} \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{S} \end{cases}$$